stokeswavegenerator#

[Eta, t, Etaij] = stokeswavegenerator(h, amin, amax, Tmin, Tmax, Phimin, Phimax, fs, duration, NoOfWave, kCalcMethod, dispout)

Description#

Generate second order stokes’ waves

Inputs#

h

Mean water depth in (m)

amin

Min wave amplitude in (m)

amax

Max wave amplitude in (m)

Tmin

Min wave mean period in (s)

Tmax

Max wave mean period in (s)

Phimin=0;

Min Phase (radian)

Phimax=2*pi;

Max Phase (radian)

fs=32;

Sample generation frequency (Hz), number of data points in one second

duration=10;

Duration time that data will be generated in (s)

NoOfWave=2;

Number of waves to be combined with each other

kCalcMethod=’beji’;
Wave number calculation method
‘hunt’: Hunt (1979), ‘beji’: Beji (2013), ‘vatankhah’: Vatankhah and Aghashariatmadari (2013)
‘goda’: Goda (2010), ‘exact’: calculate exact value
dispout=’no’;

Define to display outputs or not (‘yes’: display, ‘no’: not display)

Outputs#

Eta

Water Surface Level Time Series in (m)

t

Time in (s)

Etaij

Separated Water Surface Level Time Series in (m)

Examples#

[Eta,t,Etaij]=stokeswavegenerator(5,0.2,0.4,1,3,0,2*pi,32,10,2,'beji','yes');

References#

Beji, S. (2013). Improved explicit approximation of linear dispersion relationship for gravity waves. Coastal Engineering, 73, 11-12.

Goda, Y. (2010). Random seas and design of maritime structures. World scientific.

Hunt, J. N. (1979). Direct solution of wave dispersion equation. Journal of the Waterway Port Coastal and Ocean Division, 105(4), 457-459.

Vatankhah, A. R., & Aghashariatmadari, Z. (2013). Improved explicit approximation of linear dispersion relationship for gravity waves: A discussion. Coastal engineering, 78, 21-22.