hurricanewindvelmax#

[Vmax, Vgmax] = hurricanewindvelmax(Pc, CalcMethod, VgToVCoeff, dispout)

Description#

Calculate hurricane maximum wind velocity at the surface level
For Holland (1980) method use hurricanewindvelmaxh80 function
For Holland (2008) method use hurricanewindvelmaxh08 function

Inputs#

Pc

Hurricane central surface pressure in (Pa)

Pn=101325;
Ambient surface pressure (external pressure) in (Pa)
Standard atmosphere pressure is 101325 (Pa)
Typical value: Pn=101500 (Pa) for the western North Pacific, Pn= 101000 (Pa) for the North Atlantic
(Batke et al., 2014)
CalcMethod=’atkinson’;
Hurricane velocity calculation method
‘atkinson’: Hurricane maximum wind velocity at the surface level is calculated using Atkinson & Holliday (1977)
‘dvorak’: Hurricane maximum wind velocity at the surface level is calculated Dvorak tabular pressure–wind model (Holland, 2010)
VgToVCoeff=0.8;
Coefficient to convert gradient wind velocity to wind velocity at 10 m above surface as:
V=VgToVCoeff*Vg, if VgToVCoeff=1, then V=Vg
dispout=’no’;

Define to display outputs or not (‘yes’: display, ‘no’: not display)

Outputs#

Vmax

Maximum hurricane 1-min wind velocity at the surface level (at 10-m height) in (m/s)

Vgmax
Maximum hurricane 1-min wind velocity at the gradient level in (m/s)
Vgmax is calculated from Vmax as Vgmax=Vmax/VgToVCoeff
Gradient wind velocity can be converted to wind velocity at 10 m above surface by V=VgToVCoeff*Vg
VgToVCoeff can be approximated as VgToVCoeff=0.8
For detail on converting gradient (mean boundary-layer) wind velocity to velocity 10 m above surface see
e.g. Graham & Numm (1959), Young & Vinoth (2013), Phadke et al. (2003), Powell et al. (2003), Valamanesh et al. (2016), Wei et al. (2017)
Shore Protection Manual (SPM), U.S. Army Corps of Engineers (1984)
Coastal Engineering Manual (CEM), U.S. Army Corps of Engineers (2015)

Examples#

%EXAMPLE 1

Pc=90200; %(Pa)
[Vmax,Vgmax]=hurricanewindvelmax(Pc,'atkinson',0.8,'no');


%EXAMPLE 2

%Hurricane Katrina centeral pressure (Pa)
Pc=[100800;100700;100700;100600;100300;100000;99700;99400;98800;98400;98300;98700;...
    97900;96800;95900;95000;94200;94800;94100;93000;90900;90200;90500;91300;...
    92000;92300;92800;94800;96100;97800;98500;99000;99400;99600];

[Vmax,Vgmax]=hurricanewindvelmax(Pc,'atkinson',0.8,'yes');

References#

Data

  • www.nhc.noaa.gov/data/

  • www.nhc.noaa.gov/data/hurdat/hurdat2-format-nencpac.pdf

  • coast.noaa.gov/hurricanes

  • www.aoml.noaa.gov/hrd/data_sub/re_anal.html

Atkinson, G. D., & Holliday, C. R. (1977). Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western north Pacific. Monthly Weather Review, 105(4), 421-427.

Batke, S. P., Jocque, M., & Kelly, D. L. (2014). Modelling hurricane exposure and wind speed on a mesoclimate scale: a case study from Cusuco NP, Honduras. PloS one, 9(3), e91306.

Department of the Army, Waterways Experiment Station, Corps of Engineers, and Coastal Engineering Research Center (1984), Shore Protection Manual, Washington, D.C., vol. 1, 4th ed., 532 pp.

Graham and Numm (1959) Meteorological Conditions Pertinent to Standard Project Hurricane, Atlantic and Gulf Coasts of United States. National Hurricane Research Project. U.S. Weather Service, Report no. 33.

Harper, B. A., & Holland, G. J. (1999, January). An updated parametric model of the tropical cyclone. In Proc. 23rd Conf. Hurricanes and Tropical Meteorology.

Holland, G. J., Belanger, J. I., & Fritz, A. (2010). A revised model for radial profiles of hurricane winds. Monthly Weather Review, 138(12), 4393-4401.

Phadke, A. C., Martino, C. D., Cheung, K. F., & Houston, S. H. (2003). Modeling of tropical cyclone winds and waves for emergency management. Ocean Engineering, 30(4), 553-578.

Powell, M. D., Vickery, P. J., & Reinhold, T. A. (2003). Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422(6929), 279.

U.S. Army Corps of Engineers (2015). Coastal Engineering Manual. Engineer Manual 1110-2-1100, Washington, D.C.: U.S. Army Corps of Engineers.

Valamanesh, V., Myers, A. T., Arwade, S. R., Hajjar, J. F., Hines, E., & Pang, W. (2016). Wind-wave prediction equations for probabilistic offshore hurricane hazard analysis. Natural Hazards, 83(1), 541-562.

Wei, K., Arwade, S. R., Myers, A. T., Valamanesh, V., & Pang, W. (2017). Effect of wind and wave directionality on the structural performance of non‐operational offshore wind turbines supported by jackets during hurricanes. Wind Energy, 20(2), 289-303.

Young, I. R., & Vinoth, J. (2013). An ‘extended fetch’ model for the spatial distribution of tropical cyclone wind–waves as observed by altimeter. Ocean Engineering, 70, 14-24.