incidentreflectedwave#

[Kr, EtaInc, EtaRef, aInc, aRef, t, f] = incidentreflectedwave(Eta1, Eta2, dx, h, fs, fmin, fmax, SepMethod, kCalcMethod, dispout)

Description#

Separate incident and reflected waves

Inputs#

Eta1

Wave signal at position x1 in (m), should have same size as Eta2

Eta2

Wave signal at position x2 in (m), should have same size as Eta1

dx

Distance between x1 and x2 in (m), dx=x2-x1

h

Mean water depth in (m)

fs=2;

Sampling frequency that data collected at in (Hz), if fs=1 then output is equivalent to normalized filter

fmin=0;

Minimum frequency to be considered in (Hz)

fmax=fs/2;

Maximum frequency to be considered in (Hz)

SepMethod=’goda’;
Incident and reflected waves Separation method
‘goda’: Goda and Suzuki (1977)
‘ma’: Ma et al. (2010)
‘frigaard’: Frigaard and Brorsen (1995)
kCalcMethod=’beji’;
Wave number calculation method
‘hunt’: Hunt (1979), ‘beji’: Beji (2013), ‘vatankhah’: Vatankhah and Aghashariatmadari (2013)
‘goda’: Goda (2010), ‘exact’: calculate exact value
dispout=’no’;

Define to display outputs or not (‘yes’: display, ‘no’: not display)

Outputs#

Kr

Reflection coefficient

EtaInc

Incident wave (m)

EtaRef

Reflected wave (m)

aInc

Amplitude of incident wave (m)

aRef

Amplitude of reflected wave (m)

t

Time (s)

f

Frequency (Hz)

Examples#

h=1;
fs=2;
dt=1/fs;
duration=1024;
t(:,1)=linspace(0,duration-dt,duration*fs);
x1=1;
x2=3.7;
dx=x2-x1;
W1=0.5.*cos(0.412.*x1-2.*pi.*0.2.*t);
W2=0.5.*cos(0.739.*x1-2.*pi.*0.34.*t);
EtaIncGauge1(:,1)=(W1+W2);
W3=0.5.*cos(0.412.*x2-2.*pi.*0.2.*t);
W4=0.5.*cos(0.739.*x2-2.*pi.*0.34.*t);
EtaIncGauge2(:,1)=(W3+W4);
W5=0.1.*cos(0.412.*x1+2.*pi.*0.2.*t);
W6=0.1.*cos(0.739.*x1+2.*pi.*0.34.*t);
EtaRefGauge1(:,1)=(W5+W6);
W7=0.1.*cos(0.412.*x2+2.*pi.*0.2.*t);
W8=0.1.*cos(0.739.*x2+2.*pi.*0.34.*t);
EtaRefGauge2(:,1)=(W7+W8);
Eta1=EtaIncGauge1+EtaRefGauge1;
Eta2=EtaIncGauge2+EtaRefGauge2;

[Kr,EtaInc,EtaRef,aInc,aRef,t,f]=incidentreflectedwave(Eta1,Eta2,dx,h,fs,0,fs/2,'goda','beji','yes');

References#

Beji, S. (2013). Improved explicit approximation of linear dispersion relationship for gravity waves. Coastal Engineering, 73, 11-12.

Baldock, T. E., & Simmonds, D. J. (1999). Separation of incident and reflected waves over sloping bathymetry. Coastal Engineering, 38(3), 167-176.

Frigaard, P., Brorsen, M., 1995. A time domain method for separating incident and reflected irregular waves. Coastal Eng. 24, 205–215

Goda, Y., & Suzuki, Y. (1977). Estimation of incident and reflected waves in random wave experiments. In Coastal Engineering 1976 (pp. 828-845).

Goda, Y. (2010). Random seas and design of maritime structures. World scientific.

Hunt, J. N. (1979). Direct solution of wave dispersion equation. Journal of the Waterway Port Coastal and Ocean Division, 105(4), 457-459.

Ma, Y., Dong, G., Ma, X., & Wang, G. (2010). A new method for separation of 2D incident and reflected waves by the Morlet wavelet transform. Coastal Engineering, 57(6), 597-603.

Mansard, E. P., & Funke, E. R. (1980). The measurement of incident and reflected spectra using a least squares method. In Coastal Engineering 1980 (pp. 154-172).

Vatankhah, A. R., & Aghashariatmadari, Z. (2013). Improved explicit approximation of linear dispersion relationship for gravity waves: A discussion. Coastal engineering, 78, 21-22.