hurricanewindvelmaxh80#

[Vmax, Vgmax] = hurricanewindvelmaxh80(Pc, Pn, Rhoa, VgToVCoeff, dispout)

Description#

Calculate hurricane maximum wind velocity at the gradient level using Holland (1980) method

Inputs#

Pc

Hurricane central surface pressure in (Pa)

Pn=101325;
Ambient surface pressure (external pressure) in (Pa)
Standard atmosphere pressure is 101325 (Pa)
Typical value: Pn=101500 (Pa) for the western North Pacific, Pn= 101000 (Pa) for the North Atlantic
(Batke et al., 2014)
Rhoa=1.204;

Air density at the gradient level in (kg/m3)

VgToVCoeff=0.8;
Coefficient to convert gradient wind velocity to wind velocity at 10 m above surface as:
V=VgToVCoeff*Vg, if VgToVCoeff=1, then V=Vg
dispout=’no’;

Define to display outputs or not (‘yes’: display, ‘no’: not display)

Outputs#

Vmax
Maximum hurricane 1-min wind velocity at the surface level (at 10-m height) in (m/s)
Vmax is calculated from Vgmax as Vmax=Vgmax*VgToVCoeff
Gradient wind velocity converted to wind velocity at 10 m above surface by V=VgToVCoeff*Vg
Vgmax
Maximum hurricane 1-min wind velocity at the gradient level in (m/s)
Gradient wind velocity can be converted to wind velocity at 10 m above surface by V=VgToVCoeff*Vg
VgToVCoeff can be approximated as VgToVCoeff=0.8
For detail on converting gradient (mean boundary-layer) wind velocity to velocity 10 m above surface see
e.g. Graham & Numm (1959), Young & Vinoth (2013), Phadke et al. (2003), Powell et al. (2003), Valamanesh et al. (2016), Wei et al. (2017)
Shore Protection Manual (SPM), U.S. Army Corps of Engineers (1984)
Coastal Engineering Manual (CEM), U.S. Army Corps of Engineers (2015)

Examples#

%EXAMPLE 1

Pc=90200; %(Pa)
Pn=101000; %(Pa)
Rhoa=1.15; %(Kg/m^3)
VgToVCoeff=0.8;
[Vmax,Vgmax]=hurricanewindvelmaxh80(Pc,Pn,Rhoa,VgToVCoeff,'no');


%EXAMPLE 2

%Hurricane Katrina centeral pressure (Pa)
Pc=[100800;100700;100700;100600;100300;100000;99700;99400;98800;98400;98300;98700;...
    97900;96800;95900;95000;94200;94800;94100;93000;90900;90200;90500;91300;...
    92000;92300;92800;94800;96100;97800;98500;99000;99400;99600];

Pn=101325; %Ambient surface pressure (external pressure) in (Pa)
Rhoa=1.15; %Air density in (kg/m3)
VgToVCoeff=0.8;

[Vmax,Vgmax]=hurricanewindvelmaxh80(Pc,Pn,Rhoa,VgToVCoeff,'yes');

References#

Data

  • www.nhc.noaa.gov/data/

  • www.nhc.noaa.gov/data/hurdat/hurdat2-format-nencpac.pdf

  • coast.noaa.gov/hurricanes

  • www.aoml.noaa.gov/hrd/data_sub/re_anal.html

Batke, S. P., Jocque, M., & Kelly, D. L. (2014). Modelling hurricane exposure and wind speed on a mesoclimate scale: a case study from Cusuco NP, Honduras. PloS one, 9(3), e91306.

Department of the Army, Waterways Experiment Station, Corps of Engineers, and Coastal Engineering Research Center (1984), Shore Protection Manual, Washington, D.C., vol. 1, 4th ed., 532 pp.

Graham and Numm (1959) Meteorological Conditions Pertinent to Standard Project Hurricane, Atlantic and Gulf Coasts of United States. National Hurricane Research Project. U.S. Weather Service, Report no. 33.

Harper, B. A., & Holland, G. J. (1999, January). An updated parametric model of the tropical cyclone. In Proc. 23rd Conf. Hurricanes and Tropical Meteorology.

Holland, G. J. (1980). An analytic model of the wind and pressure profiles in hurricanes. Monthly weather review, 108(8), 1212-1218.

Phadke, A. C., Martino, C. D., Cheung, K. F., & Houston, S. H. (2003). Modeling of tropical cyclone winds and waves for emergency management. Ocean Engineering, 30(4), 553-578.

Powell, M. D., Vickery, P. J., & Reinhold, T. A. (2003). Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422(6929), 279.

U.S. Army Corps of Engineers (2015). Coastal Engineering Manual. Engineer Manual 1110-2-1100, Washington, D.C.: U.S. Army Corps of Engineers.

Valamanesh, V., Myers, A. T., Arwade, S. R., Hajjar, J. F., Hines, E., & Pang, W. (2016). Wind-wave prediction equations for probabilistic offshore hurricane hazard analysis. Natural Hazards, 83(1), 541-562.

Wei, K., Arwade, S. R., Myers, A. T., Valamanesh, V., & Pang, W. (2017). Effect of wind and wave directionality on the structural performance of non‐operational offshore wind turbines supported by jackets during hurricanes. Wind Energy, 20(2), 289-303.

Young, I. R., & Vinoth, J. (2013). An ‘extended fetch’ model for the spatial distribution of tropical cyclone wind–waves as observed by altimeter. Ocean Engineering, 70, 14-24.